There is an increasing trend among customers of an electrical distribution utility to adopt grid-tied solar photovoltaic systems. This shift offers multiple benefits to consumers, including lower monthly electricity bills and a contribution to the development of green energy. For the electrical distribution utility, various impacts may arise due to varying levels of solar energy penetration. This study investigates the effects of integrating varying levels of solar photovoltaic penetration into the commercial consumer network of Cagayan de Oro Electric Power and Light Company (CEPALCO) in the Philippines. Utilizing PowerWorld simulator, the research evaluates 11 different scenarios with solar penetration levels adjusted according to the percentage of load demand. Key findings include alterations in solar megavolt ampere of reactive power output, bus voltage levels, transformer power loading, and transmission line ampacity, with frequency levels remaining stable across scenarios. The optimal solar penetration level was identified at 70%, balancing the benefits of solar energy integration with the need to maintain grid stability and operational limits. This optimal level ensures the effective utilization of renewable energy sources without compromising the performance of CEPALCO’s electrical infrastructure. The research concludes with recommendations for maintaining grid stability and operational limits at the optimal solar penetration limits.