This article addresses Tikhonov-like regularization methods with convex penalty functionals for solving nonlinear ill-posed operator equations formulated in Banach or, more general, topological spaces. We present an approach for proving convergence rates that combines advantages of approximate source conditions and variational inequalities. Precisely, our technique provides both a wide range of convergence rates and the capability to handle general and not necessarily convex residual terms as well as nonsmooth operators. Initially formulated for topological spaces, the approach is extensively discussed for Banach and Hilbert space situations, showing that it generalizes some well-known convergence rates results.
Read full abstract