In this paper, we deal with the following class of fractional (p, q)-Laplacian Kirchhoff type problem: 1+[u]s,pp(-Δ)psu+1+[u]s,qq(-Δ)qsu+V(εx)(|u|p-2u+|u|q-2u)=f(u)inRN,u∈Ws,p(RN)∩Ws,q(RN),u>0inRN,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document}$$\\begin{aligned} \\left\\{ \\begin{array}{ll} \\left( 1+[u]_{s,p}^{p}\\right) (-\\Delta )_{p}^{s}u+ \\left( 1+[u]^{q}_{s, q}\\right) (-\\Delta )_{q}^{s}u + V(\\varepsilon x) (|u|^{p-2}u + |u|^{q-2}u)= f(u) &{} \\text{ in } \\mathbb {R}^{N}, \\\\ u\\in W^{s, p}(\\mathbb {R}^{N})\\cap W^{s,q}(\\mathbb {R}^{N}), \\quad u>0 \\text{ in } \\mathbb {R}^{N}, \\end{array} \\right. \\end{aligned}$$\\end{document}where varepsilon >0, sin (0, 1), 1<p<q<frac{N}{s}<2q, (-Delta )_{t}^{s}, with tin {p, q}, is the fractional t-Laplacian operator, V:mathbb {R}^{N}rightarrow mathbb {R} is a positive continuous potential such that inf _{partial Lambda }V>inf _{Lambda } V for some bounded open set Lambda subset mathbb {R}^{N}, and f:mathbb {R}rightarrow mathbb {R} is a superlinear continuous nonlinearity with subcritical growth at infinity. By combining the method of Nehari manifold, a penalization technique, and the Lusternik–Schnirelman category theory, we study the multiplicity and concentration properties of solutions for the above problem when varepsilon rightarrow 0.