Tree shrews have relatively primitive tribosphenic molars that are apparently similar to those of basal eutherians; thus, these animals have been used as a model to describe mastication in early mammals. In this study the gross morphology of the bony skull, joints, dentition, and muscles of mastication are related to potential jaw movements and cuspal relationships. Potential for complex mandibular movements is indicated by a mobile mandibular symphysis, shallow mandibular fossa that is large compared to its resident condyle, and relatively loose temporomandibular joint ligaments. Abrasive tooth wear is noticeable, and is most marked at the first molars and buccal aspects of the upper cheek teeth distal to P2. Muscle morphology is basically similar to that previously described for Tupaia minor and Ptilocercus lowii. However, in T. glis, an intraorbital part of deep temporalis has the potential for inducing lingual translation of its dentary, and the large medial pterygoid has extended its origin anteriorly to the floor of the orbit, which would enhance protrusion. The importance of the tongue and hyoid muscles during mastication is suggested by broadly expanded anterior bellies of digastrics, which may assist mylohyoids in tensing the floor of the mouth during forceful tongue actions, and by preliminary electromyography, which suggests that masticatory muscles alone cannot fully account for jaw movements in this species.