IntroductionPemetrexed inhibits folate-dependent enzymes involved in pyrimidine and purine synthesis. Previous studies of genetic variation in these enzymes as predictors of pemetrexed efficacy have yielded inconsistent results. We investigated whether red blood cell (RBC) total folate, a phenotypic rather than genotypic, marker of cellular folate status was associated with the response to pemetrexed-based chemotherapy in advanced nonsquamous non–small-cell lung cancer (NSCLC). Materials and MethodsWe conducted a prospective cohort study of patients with stage IV nonsquamous NSCLC receiving first-line chemotherapy containing pemetrexed. The pretreatment RBC total folate level was quantified using liquid chromatography mass spectrometry. We then compared the objective response rate (ORR) between patients with RBC total folate concentrations greater than and less than an optimal cutoff value determined from the receiver operating characteristic curve. A logistic regression model was used to adjust for age, sex, and the use of bevacizumab. ResultsThe ORR was 62% (32 of 52 patients). Receiver operating characteristic analysis was used to establish that a RBC total folate cutoff value of 364.6 nM optimally discriminated between pemetrexed responders and nonresponders. Patients with RBC total folate < 364.5 nM had an ORR of 27% compared with 71% for patients with RBC total folate > 364.5 nM (P = .01). This difference persisted after adjusting for age, sex, and the use of bevacizumab (odds ratio, 0.07; 95% confidence interval, 0.01-0.57; P = .01). ConclusionA low pretreatment RBC total folate was associated with an inferior response to pemetrexed-based chemotherapy in stage IV nonsquamous NSCLC. Larger, multicenter studies are needed to validate RBC total folate as a predictive marker of pemetrexed response.