The utility of plasmid DNA as an immunogen has been limited by its weak immunogenicity. In the present study, we evaluated the ability of a family of linear polyethylenimine (PEI) polymers, complexed to plasmid DNA, to augment DNA expression in vivo and to enhance antigen-specific adaptive immune responses. We showed that four of five structurally different PEIs that we evaluated increased in vivo DNA expression 20- to 400-fold, and enhanced DNA-induced epitope-specific CD8⁺ T-cell responses 10- to 25-fold in BALB/c and C57BL/6J mice respectively, when delivered intravenously. Functional studies of the PEI-DNA-induced CD8⁺ T-cell responses demonstrated that formulation of DNA with PEI was associated with increased numbers of cells secreting type I cytokines. In addition, PEI-DNA complexes improved antigen-specific T(H) 1-helper cell and humoral responses. Most importantly, the PEI-DNA complexes elicited memory cellular responses, capable of rapid expansion and accelerated clearance of a lethal dose of recombinant Listeria monocytogenes. Lastly, we identified physical properties of PEI-DNA complexes that are associated with enhanced DNA-elicited immunogenicity. These findings demonstrate that PEI polymers can play an important role in the development of DNA-based vaccines in the setting of infectious disease prevention and cancer therapy.
Read full abstract