Millet (M) and banana peel (Bp) possess significant nutritional qualities and have been shown to reduce obesity resulting from a high-fat diet (HFD). The present research assessed the effect of millet flour and banana peel mixtures on lipid profiles, liver and kidney functions, and characterized food products derived from these mixtures. Thirty-five male albino rats were allocated into five groups for a biochemical analysis. The control group (n = 7) received a basal diet, while the remaining 28 rats were fed a high-fat diet (HFD) for 8 weeks to induce obesity. These rats were then separated into four sub-groups (n = 7 each): sub-group 1 as the positive control (+ve) receiving only HFD, while sub-groups 2, 3, and 4 were administered HFD supplemented with millet flour and banana peel mixtures (M90+Bp10 %, M80+Bp20 %, and M70+Bp30 %), respectively for an additional 8 weeks. The chemical composition analysis showed that banana peel (Bp) has higher levels of fat, ash, fiber, magnesium, and potassium, while millet flour is richer in carbohydrates. Bp also had superior antioxidant activity and total phenol content (13.32 % and 10.54 mg/100g) compared to millet flour (3.75 % and 4.55 mg/100g). Biochemical tests on the HFD plus (M70+Bp30 %) group revealed improved lipid profiles, leptin, antioxidant enzymes, and kidney and liver functions. Glucose levels were higher in the HFD group (137.33 mg/dl) than in the control (85.70 mg/dl), but these levels were reduced with millet and banana peel treatment. The histology of liver tissues confirmed the biochemical results. Sensory evaluation of pancakes and toast from the (M70+Bp30 %) mixture by forty panelists showed high acceptability, aligning with the biochemical outcomes. This study suggests that a banana peel and millet flour mixture could help reduce obesity.
Read full abstract