As a principal part of the atmosphere–lithosphere interface, soil plays a key role in regulating the atmospheric CO2 concentration and global climate. Comprising two major pools (carbonate in soils and bicarbonate in groundwater), soil inorganic carbon (SIC) is deemed as the primary carbon (C) sink and source in areas with low mean annual rainfall. SIC may originate from soil parent material or from the formation of secondary carbonate when divalent cations from an extraneous source are supplied. The latter may result in pedogenic carbonate (PC) formation, increasing soil C content and sequestering atmospheric carbon. Since the sequestration of atmospheric CO2 through formation of pedogenic carbonate is gaining popularity as a method to support climate change mitigation efforts and to claim carbon credits, the mechanisms influencing the formation and migration of pedogenic carbonate need to be well understood. The present review provides an overview of the available literature on potential natural and anthropogenic factors influencing the pedogenic carbonate pool in soils. Firstly, the overall mechanisms of pedogenic carbonate formation, as well as the control factors, are described. Secondly, the impact of various land-use changes on pedogenic carbon pool modification is discussed. Then, the potential of stabilizing atmospheric CO2 through PC formation and the challenges and techniques of tracking the formation of PC through engineered pathways in soils are explored. Finally, isotopic signature as a technique for distinguishing neo-formed carbonate in soil is scrutinized.
Read full abstract