Salted duck eggs are a popular food product, but their high salt content and uneven salt distribution can reduce acceptability. This study investigated the effects of pH-high-intensity ultrasound combined treatment on the salt-induced gelation properties of egg yolk granules. The results showed that the pH5 + 150 W treatment group exhibited the best physical and gelation properties, with the smallest particle size (1597.33 nm), optimal dispersibility (PDI 0.29), and good stability. The gelation properties of this group also demonstrated excellent springiness (0.30 mm), cohesiveness (0.56), and gumminess (0.05 N). Furthermore, the pH5 + 150 W group had the highest water holding capacity of 97.42 % and relatively high hydrophobicity (173.39 μg). Notably, it also showed high oil exudation (2.83 %) and good sandiness (62.07 %). The pH5 + 150 W led to a significant redshift of the fluorescence peak at 335 nm and an enhancement of the peak intensity at 562 nm compared to the control group. Structural characterization revealed a more ordered protein structure and a uniform gel structure with enhanced electrostatic repulsion between oil droplets. Secondary structure analysis of the proteins showed a significant reduction in α-helix and β-sheet, while β-turn and random coil increased. In summary, the pH5 + 150 W treatment displayed the best gelation properties, providing theoretical guidance for enhancing the processing performance of yolk and expanding their application in the food industry.