Context: Self-drilling mini-implants are commonly used in orthodontic treatment procedures, but there is limited information regarding their fracture resistance in areas of high-density bone without predrilling. Aims: The objective of this study is to compare and evaluate the maximum insertion torque and fracture resistance of 3 commonly used self-drilling mini-implants in India, and to assess the influence of variation in diameter in torque generation. Materials and methods: 90 mini-implants from 3 different manufacturers with 2 different diameters were drilled into acrylic blocks using a dial indicating torque screwdriver. All mini-implants were drilled at the rate of 20-30 rotations/min, implants were drilled until they fractured. Torque generated at the point of fracture is shown on the dial of the screwdriver. Measurements of the peak insertion torque value for each manufacturer were recorded separately. Statistical analysis: Analysis of variance, post hoc Bonferroni test. Results: Analysis of variance test showed a significant difference among all the manufacturers in both the diameters with P < .05. Implants of 1.6 mm diameter of Ancer group have the highest fracture resistance value when compared with the same diameter of JJ Orthodontics and SK Surgicals. Implants with higher diameter have more resistance than those with lower diameter. Conclusions: The observed highest fracture resistance is 47 Ncm by Ancer and least fracture resistance is 16 Ncm by JJ Orthodontics. The values are higher than the torque required to place mini-implants intraorally. Ancer mini-implants have the highest peak fracture torque, thus more than SK Surgicals and JJ Orthodontics.