Cardiovascular diseases are the leading cause of death globally, highlighting the need for accurate diagnostic tools. To address this issue, we introduce a novel approach for arrhythmia detection based on electrocardiogram (ECG) that incorporates explainable artificial intelligence through three key methods. First, we developed an enhanced R peak detection method that integrates domain-specific knowledge into the ECG, improving peak identification accuracy by accounting for the characteristic features of R peaks. Second, we proposed an arrhythmia classification method utilizing a modified convolutional neural network (CNN) architecture with additional convolutional and batch normalization layers. This model processes a triad of cardio cycles—the preceding, current, and following cycles—to capture temporal dependencies and hidden features related to arrhythmias. Third, we implemented an interpretation method that explains CNN’s decisions using clinically relevant features, making the results understandable to clinicians. Using the MIT-BIH database, our approach achieved an accuracy of 99.43%, with F1-scores approaching 100% for major arrhythmia classes. The integration of these methods enhances both the performance and transparency of arrhythmia detection systems.
Read full abstract