There is a significant difference between the simulation effect and the actual effect in the design process of maize straw-breaking equipment due to the lack of accurate simulation model parameters in the breaking and processing of maize straw. This article used a combination of physical experiments, virtual simulation, and machine learning to calibrate the simulation parameters of maize straw. A bimodal-distribution discrete element model of maize straw was established based on the intrinsic and contact parameters measured via physical experiments. The significance analysis of the simulation parameters was conducted via the Plackett-Burman experiment. The Poisson ratio, shear modulus, and normal stiffness of the maize straw significantly impacted the peak compression force of the maize straw and steel plate. The steepest-climb test was carried out for the significance parameter, and the relative error between the peak compression force in the simulation test and the peak compression force in the physical test was used as the evaluation index. It was found that the optimal range intervals for the Poisson ratio, shear modulus, and normal stiffness of the maize straw were 0.32-0.36, 1.24 × 108-1.72 × 108 Pa, and 5.9 × 106-6.7 × 106 N/m3, respectively. Using the experimental data of the central composite design as the dataset, a GA-BP neural network prediction model for the peak compression force of maize straw was established, analyzed, and evaluated. The GA-BP prediction model's accuracy was verified via experiments. It was found that the ideal combination of parameters was a Poisson ratio of 0.357, a shear modulus of 1.511 × 108 Pa, and a normal stiffness of 6.285 × 106 N/m3 for the maize straw. The results provide a basis for analyzing the damage mechanism of maize straw during the grinding process.
Read full abstract