Spinal cord injury (SCI) above the lumbosacral spinal cord induces loss of voluntary control over micturition. Spinal cord transection (SCT) was the gold standard method to reproduce SCI in rodents, but its translational value is arguable and other experimental SCI methods need to be better investigated, including spinal cord contusion (SCC). At present, it is not fully investigated if urinary impairments arising after transection and contusion are comparable. To explore this, we studied bladder-reflex activity and lower urinary tract (LUT) and spinal cord innervation after SCT and different severities of SCC. Severe-contusion animals presented a longer spinal shock period and the tendency for higher residual volumes, followed by SCT and mild-contusion animals. Urodynamics showed that SCT animals presented higher basal and peak bladder pressures. Immunostaining against growth-associated protein-43 (GAP43) and calcitonin gene-related peptide (CGRP) at the lumbosacral spinal cord demonstrated that afferent sprouting is dependent on the injury model, reflecting the severity of the lesion, with a higher expression in SCT animals. In LUT organs, the expression of GAP43, CGRP cholinergic (vesicular acetylcholine transporter (VAChT)) and noradrenergic (tyrosine hydroxylase (TH)) markers was reduced after SCI in the LUT and lumbosacral cord, but only the lumbosacral expression of VAChT was dependent on the injury model. Overall, our findings demonstrate that changes in LUT innervation and function after contusion and transection are similar but result from distinct neuroplastic processes at the lumbosacral spinal cord. This may impact the development of new therapeutic options for urinary impairment arising after spinal cord insult.