The competence of organic solar cells (OSCs) could be enhanced by improving the light absorption capabilities as well as the open-circuit voltage (Voc) of utilized molecules. To upgrade overall functionality of OSCs, seven new molecules were designed in this work using an end-cap alteration technique on Quinoxaline fused core-based non-fullerene acceptor (Qx-2) molecule. This technique is known to be quite advantageous in terms of improvement of the effectiveness and optoelectrical behavior of various OSCs. Critical parameters like the absorption maximum, frontier molecular orbitals, excitation energy, exciton binding energy, Voc, and fill factor of molecules were considered for the molecules thus designed. All newly designed molecules showed outstanding improvement in optoelectronic as well as performance-related properties. Out of all scrutinized molecules, Q1 exhibited highest wavelength of absorption peak (λmax = 779 nm) with the reduced band gap (1.90 eV), least excitation energy (Ex = 1.59 eV), along with the highest dipole moment (17.982950 D). Additionally, the newly designed compounds Q4, Q5, and Q6 exhibited significantly improved Vocs that were 1.55, 1.47, and 1.50 eV accordingly, as compared to the 1.37 eV of Qx-2 molecule. These molecules also showed remarkable improvement in fill factor attributed to direct correspondence of Voc with it. Inclusively, these results support the superiority of these newly developed molecules as prospective constituents of upgraded OSCs.