BackgroundParkinson’s disease (PD) is a neurodegenerative disorder that is featured by the elevated loss of substantia nigra pars compacta dopaminergic neurons and the disruption of motor functions. Aberrant expression of circular RNAs (circRNAs) is correlated with neurodegenerative diseases. This study aimed to explore the role of circTLK1 in PD pathology. MethodsMPTP-stimulated in vivo PD mouse model and MPP + and rotenone-induced in vitro PD model were established to investigate the function of circTLK1/miR-26a-5p/DAPK1 axis during dopaminergic neuron injury. The motor function of mice was evaluated by using the Rotarod test. Brain tissue damage was checked by hematoxylin and eosin, TdT-mediated dUTP-biotin nick end labeling. Cell viability, apoptosis, and cytotoxicity were evaluated by cell counting kit 8 (CCK-8), flow cytometry, and LDH activity. The interaction between circTLK1 and miR-26a-5p as well as miR-26a-5p and DAPK1 was detected by luciferase reporter assay. ResultsThe expression of circTLK1 was notably elevated in in vitro and in vivo PD models. Knockdown of circTLK1 significantly improved cell viability, suppressed apoptosis and cytotoxicity, whereas inhibition of miR-16a-5p and overexpression of DAPK1 abolished these effects. MiR-26a-5p acts as a sponge of DAPK1 to mediate circTLK1 functions. Luciferase reporter gene assay confirmed the interaction between circTLK1 and miR-26a-5p as well as miR-26a-5p and DAPK1. ConclusionDepletion of circTLK1 mitigates dopaminergic neuron injury in vitro and in vivo, via releasing miR-26a-5p to target DAPK1 expression. Targeting circTLK1 may contribute to improving PD therapy.
Read full abstract