The Pd(DAP)Cl2 complex, where DAP is 2,6-diaminopyridine, was synthesized and characterized. The stoichiometries and stability constants of the complexes formed between various biologically relevant ligands (amino acids, amides, DNA constituents, and dicarboxylic acids) and [Pd(DAP)(H2O)2]2+ were investigated at 25 °C and at constant 0.1 mol·dm−3 ionic strength. The concentration distribution diagrams of the various species formed were evaluated. A further investigation of the binding properties of the diaqua complex [Pd(DAP)(H2O)2]2+ with calf thymus DNA (CT-DNA) was investigated by UV–Vis spectroscopy. The intrinsic binding constants (K b) calculated from UV–Vis absorption studies is 1.04 × 103 mol·dm−3. The calculated (K b) value was found to be of lower magnitude than that of the classical intercalator EB (ethidium bromide) (K b = 1.23 (±0.07) × 105 mol·dm−3), suggesting an electrostatic and/or groove binding mode for the interaction with CT-DNA.
Read full abstract