The hot ductility is measured for six different steel grades with different microalloying elements and with varying manganese contents using the hot tensile test machine with melting/solidification unit at the Department of Ferrous Metallurgy RWTH Aachen University. To identify the influence of manganese on hot ductility, tests are performed with varying the manganese content from 0.7 to 18.2 wt pct, a high manganese steel. Additionally, the effect of different cooling and strain rates is analyzed by changing the particular rate for selected samples in the minima. To investigate and detect the cause of cracking during testing, the fracture surfaces in the ductility minima are considered with scanning electron microscope–energy dispersive X-ray spectroscopy. Thermodynamic modeling is conducted on basis of the commercial software ThermoCalc©. A sharp decrease of the hot ductility is recognizable at 1398 K (1125 °C), at only 0.7 wt pct manganese because of the low manganese to sulfur ratio. The grades with a Mn content up to 1.9 wt pct show a good ductility with minimal ductility loss. In comparison, the steel grade with 18.2 wt pct has a poor hot ductility. Because of the formation of complex precipitates, where several alloying elements are involved, the influence of boron on hot ductility is not fully clarified. By increasing the cooling rate, the reduction of area values are shifted to smaller values. For high test temperatures, these measured values are decreased for lower strain rates. Thereby, an early drop of the ductility is noticeable for the high temperatures around 1373 K (1100 °C).
Read full abstract