A comprehensive overview of available methods for assessing nanofiller dispersion is presented for a wide range of layered silicate-based poly(ε-caprolactone) (PCL) nanocomposites. Focusing on their respective strengths and weaknesses, rheological, mechanical and thermal characterization approaches are evaluated in direct relation to morphological information. Pronounced changes in the rheological and mechanical properties of the materials are only observed for nanocomposites displaying the highest nanofiller dispersion levels, as confirmed by an innovative and highly reliable thermal analysis approach based on quasi-isothermal crystallization. As such, the data obtained from the different methods also allow a detailed investigation of the crucial factors affecting nanofiller dispersion, evidencing the importance of specific matrix/filler interactions and the need for proper melt processing conditions when targeting significant property enhancements. Finally, the wide potential of the developed methodologies for the characterization of polymeric nanocomposites in general is illustrated by an extension to carbon nanotube-based PCL composites, unambiguously demonstrating their complementarity and broad applicability.
Read full abstract