Limited data have been collected on the presence of contaminants in the Arctic terrestrial ecosystem, with the exception of radioactive fallout from atmospheric weapons testing. Although southern and temperate biological systems have largely cleansed themselves of radioactive fallout deposited during the 1950s and 1960s, Arctic environments have not. Lichens accumulate radioactivity more than many other plants because of their large surface area and long life span; the presence and persistence of radioisotopes in the Arctic is of concern because of the lichen → reindeer → human ecosystem. Effective biological half-life of cesium 137 is reckoned to be substantially less than its physical half-life. The database on organochlorines in Canadian Arctic terrestrial mammals and birds is very limited, but indications are that the air/plant/animal contaminant pathway is the major route of these compounds into the terrestrial food chain. For terrestrial herbivores, the most abundant organochlorine is usually hexachlorobenzene followed by hexachlorocyclohexane isomers. PCB accumulation favours the hexachlorobiphenyl, pentachlorobiphenyl and heptachlorobiphenyl homologous series. The concentrations of the various classes of organochlorine compounds are substantially lower in terrestrial herbivore tissues than in marine mammal tissues. PCBs and DDT are the most abundant residues in peregrine falcons (a terrestrial carnivore) reaching average levels of 9.2 and 10.4 μg · g −1, respectively, more than 10 times higher than other organochlorines and higher than in marine mammals, including the polar bear. Contaminants from local sources include metals from mining activities, hydrocarbons and waste drilling fluids from oil and gas exploration and production, wastes from DEW line sites, naturally occurring radionuclides associated with uranium mineralization, and smoke containing SO 2 and H 2SO 4 aerosol from the Smoking Hills at Cape Bathurst, N.W.T.
Read full abstract