If PC components are produced on site under the same conditions, the quality can be secured at least equal to that of factory production. In-situ production can reduce environmental loads by 14.58% or more than factory production, and if the number of PC components produced in-situ is increased, the cost can be reduced by up to 39.4% compared to factory production. Most of the existing studies focus on optimizing the layout of logistics centers, and relatively little attention is paid to the layout of PC parts for in-situ production. PC component yard layout planning for in-situ production can effectively reduce carbon dioxide emissions and improve construction efficiency. Therefore, the purpose of this study is to develop an environmental impact minimization model for in-situ production of PC components. As a result of applying the developed model, the optimization of the improved dung beetle optimization algorithm was verified to be efficient by improving the neighboring correlation by 22.79% and reducing carbon dioxide emissions by 18.33% compared to the dung beetle optimization algorithm. The proposed environmental impact minimization model can support the construction, reconstruction, and functional upgrade of logistics centers, contributing to low carbon dioxide in the logistics industry.
Read full abstract