Reconstruction of real-world scenes from a set of multiple images is a topic in computer vision and 3D computer graphics with many interesting applications. Attempts have been made to real-time reconstruction on PC cluster systems. While these provide enough performance, they are expensive and less flexible. Approaches that use a GPU hardware-acceleration on single workstations achieve real-time framerates for novel-view synthesis, but do not provide an explicit volumetric representation. This work shows our efforts in developing a GPU hardware-accelerated framework for providing a photo-consistent reconstruction of a dynamic 3D scene. High performance is achieved by employing a shape from silhouette technique in advance. Since the entire processing is done on a single PC, the framework can be applied in mobile environments, enabling a wide range of further applications. We explain our approach using programmable vertex and fragment processors and compare it to highly optimized CPU implementations. We show that the new approach can outperform the latter by more than one magnitude and give an outlook for interesting future enhancements.