Quaternary volcanoes from the southeastern Tibetan Plateau occur at the Tengchong volcanic field (TVF). The Daliuchong volcano is the largest volcano in the TVF, which has the most felsic compositions with explosive eruptions. The eruption history and origin of the Daliuchong volcano are a matter of debate. In the present paper, we report the groundmass K-Ar ages, whole-rock Sr-Nd-Pb-Hf isotopes, zircon U-Pb ages, and Hf-O isotopic compositions for the Daliuchong volcano to constrain its eruption history and petrogenesis. The groundmass K-Ar ages and zircon U-Pb ages indicate mid-Pleistocene (0.6 Ma to 0.3 Ma) eruptions. The presence of zircon phenocrysts with enriched mantle-like O-Hf isotopes (δ18O < 6‰, and εHf about −2) suggests the involvement of mantle-derived basaltic magmas. The whole-rock Pb isotope compositions and Sr-Nd isotope modeling reveal the involvement of magma from the lower crust. The zircon xenocrysts reveal previously unrecognized 20-Ma magmatic activity at the TVF and contamination of late Cretaceous (66–80 Ma) S-type granites during the formation of the Daliuchong dacites. The dacite magma at Daliuchong was formed by mixing of the mantle-derived magma and lower-crust-derived magma and subsequently contaminated by upper crustal materials, including late Cretaceous S-type granitic rocks.
Read full abstract