Urban soils contaminated by historical and current anthropogenic activities present an alarming human health risk requiring redress. Federal and state governments continue to lower residential soil lead (Pb) screening standards, which will likely require new risk-based approaches to address urban soil Pb contamination. Phosphorus (P) soil amendments have long been presented as a solution to sequester Pb, thereby reducing exposure risk. In this study, P-containing sources (biosolids incinerator ash, poultry litter, biosolids compost, and triple superphosphate) of varying solubilities were assessed as soil amendments to reduce Pb bioaccessibility and serve as an inexpensive remediation strategy for urban soil. Contaminated soil (1624mg kg-1Pb, pH 7.43) from Cleveland, OH, was treated with the four P-containing soil amendments at a 1:5Pb:P molar ratio and two combination treatments at 1:10Pb:P molar ratio and incubated for 3 months. A batch equilibration analysis was also conducted to assess reduction in in vitro bioaccessible Pb (IVBA Pb). Pb bioaccessibility was evaluated using US EPA Method 1340 at pH 1.5 and the Physiologically Based Extraction Test pH 2.5 at 1 and 3 months. In general, treatments were ineffective in reducing IVBA Pb regardless of IVBA extraction method, incubation duration, batch equilibration analyses, or P source. The results of this study suggest P-containing amendments are not suitable to address Pb exposure in the study soil. Site-specific efficacy testing to determine reductions in IVBA Pb from P-containing amendments should be performed before making recommendations for remediation of Pb-contaminated urban soil.
Read full abstract