Quercetin, a typical flavonoid derived from a common natural plant, has multiple biological activities. Previous research in animal models has demonstrated the effectiveness of quercetin in treating rheumatoid arthritis (RA). The pharmacological effects and probable mechanisms of quercetin were evaluated in this study. Three databases, PubMed, Web of Science, and Embase, were searched for relevant studies from the creation of the databases to November 2022. Methodological quality was assessed using the SYRCLE risk of bias tool. STATA 15.1 was used to perform the statistical analysis. This research included 17 studies involving 251 animals. The results indicated that quercetin was able to reduce arthritis scores, paw swelling, histopathological scores, interleukin-1β (IL-1β), interleukin-6 (IL-6), interleukin-17 (IL-17), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1), C-reactive protein (CRP), malondialdehyde (MDA), reactive oxygen species (ROS), thiobarbituric acid reactive substances (TBARS), nuclear factor kappa B (NF-kB) and increase interleukin-10 (IL-10), catalase (CAT), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD), glutathione (GSH), and heme oxygenase-1 (HO-1). These may be related to quercetin's potential anti-inflammatory, anti-oxidative stress, and osteoprotective properties. However, more high-quality animal studies are needed to assess the effect of quercetin on RA. Additionally, the safety of quercetin requires further confirmation. Given the importance of the active ingredient, doseselection and the improvement of quercetin's bioavailability remain to be explored.
Read full abstract