Biomimetics, biomechanics, and tissue engineering are three multidisciplinary fields that have been contemplated in this research to attain the objective of improving prosthetic implants reliability. Since testing and mathematical methods are closely interlaced, a promising approach seemed to be the combination of in vitro and in vivo experiments with computer simulations (in silico). An innovative biomimetics and biomechanics approach, and a new synthetic structure providing a microenvironment, which is mechanically coherent and nutrient conducive for tissue osteoblast cell cultures used in regenerative medicine, are presented. The novel hybrid ceramic-polymeric nanocomposites are mutually investigated by finite element analysis (FEA) biomimetic modeling, anatomic reconstruction, quantitative-computed-tomography characterization, computer design of tissue scaffold. The starting base materials are a class of innovative highly bioactive hybrid ceramic-polymeric materials set-up by the proponent research group that will be used as a bioactive matrix for the preparation of in situ bio-mineralized techno- structured porous nanocomposites. This study treats biomimetics, biomechanics and tissue engineering as strongly correlated multidisciplinary fields combined to design bone tissue scaffolds. The growth, maintenance, and ossification of bone are fundamental and are regulated by the mechanical cues that are imposed by physical activities: this biomimetic/biomechanical approach will be pursued in designing the experimental procedures for in vitro scaffold mineralization and ossification. Bio-tissue mathematical modeling serves as a central repository to interface design, simulation, and tissue fabrication. Finite element computer analyses will be used to study the role of local tissue mechanics on endochondral ossification patterns, skeletal morphology and mandible thickness distributions using single and multi-phase continuum material representations of clinical cases of patients implanted with the traditional protocols. New protocols will be hypothesized for the use of the new biologically techno-structured hybrid materials.
Read full abstract