We propose a novel algorithm called Unique Brain Network Identification Number (UBNIN) for encoding the brain networks of individual subjects. To realize this objective, we employed structural MRI on 180 Parkinson's disease (PD) patients and 70 healthy controls (HC) from the National Institute of Mental Health and Neurosciences, India. We parcellated each subject's brain volume and constructed an individual adjacency matrix using the correlation between the gray matter volumes of every pair of regions. The unique code is derived from values representing connections for every node (i), weighted by a factor of 2-(i-1). The numerical representation (UBNIN) was observed to be distinct for each individual brain network, which may also be applied to other neuroimaging modalities. UBNIN ranges observed for PD were 15,360 to 17,768,936,615,460,608, and HC ranges were 12,288 to 17,733,751,438,064,640. This model may be implemented as a neural signature of a person's unique brain connectivity, thereby making it useful for brainprinting applications. Additionally, we segregated the above datasets into five age cohorts: A: ≤32 years (n1 = 4, n2 = 5), B: 33-42 years (n1 = 18, n2 = 14), C: 43-52 years (n1 = 42, n2 = 23), D: 53-62 years (n1 = 69, n2 = 22), and E: ≥63 years (n1 = 46, n2 = 6), where n1 and n2 are the number of individuals in PD and HC, respectively, to study the variation in network topology over age. Sparsity was adopted as the threshold estimate to binarize each age-based correlation matrix. Connectivity metrics were obtained using Brain Connectivity toolbox (Version 2019-03-03)-based MATLAB (R2020a) functions. For each age cohort, a decreasing trend was observed in the mean clustering coefficient with increasing sparsity. Significantly different clustering coefficients were noted in PD between age-cohort B and C (sparsity: 0.63, 0.66), C and E (sparsity: 0.66, 0.69), and in HC between E and B (sparsity: 0.75 and above 0.81), E and C (sparsity above 0.78), E and D (sparsity above 0.84), and C and D (sparsity: 0.9). Our findings suggest network connectivity patterns change with age, indicating network disruption may be due to the underlying neuropathology. Varying clustering coefficients for different cohorts indicate that information transfer between neighboring nodes changes with age. This provides evidence of age-related brain shrinkage and network degeneration. We also discuss limitations and provide an open-access link to software codes and a help file for the entire study.
Read full abstract