Background: Receptor-interacting protein kinases (RIPKs) and mixed-lineage kinase domain-like protein (MLKL) are crucial in regulating innate immune responses and cell death signaling (necroptosis and apoptosis), and are potential candidates for genetic improvement in breeding programs. Knowledge about the RIPK family and MLKL in sea cucumber remains limited. Methods: We searched the genomes of sea cucumber Holothuria leucospilota for genes encoding RIPKs and MLKL, performed phylogenetic tree, motif and functional domain analyses, and examined tissue distribution and embryonic development patterns using qPCR. Results: RIPK5 (Hl-RIPK5), RIPK7 (Hl-RIPK7) and MLKL (Hl-MLKL) were identified in sea cucumber H. leucospilota. Hl-RIPK5 and Hl-RIPK7 were mainly expressed in coelomocytes, suggesting that they play a role in innate immunity, whereas Hl-MLKL exhibited relatively low expression across tissues. During embryonic development, Hl-MLKL was highly expressed from the 2-cell stage to the morula stage, while Hl-RIPK5 and Hl-RIPK7 were primarily expressed after the morula stage, indicating different roles in embryonic development. In primary coelomocytes, Hl-RIPK5 transcriptional activity was significantly depressed by LPS, poly(I:C), or pathogen Vibrio harveyi. Hl-RIPK7 expression levels were unchanged following the same challenges. Hl-MLKL mRNA levels were significantly decreased with poly(I:C) or V. harveyi, but did not change with LPS. Conclusions: These findings provide valuable insights into the evolutionary tree and characterization of RIPK and MLKL genes in sea cucumber, contributing to the broader understanding of the RIPK gene family and MLKL in ancient echinoderms.
Read full abstract