Abstract
Low hatchability has been a persistent challenge in the goose industry. Establishing standard atlases and comprehending embryonic development patterns are essential to improving the hatching rates of goose eggs. However, comprehensive descriptions of normal atlases, embryonic development, and energy requirements in geese are lacking. In this study, a total of 120 fertile eggs from well-known large Shitou goose were incubated using 12 nesting purebred female geese. During hatching, both the temperature of the eggshells and the weight of eggs were recorded, and daily photographs of the embryos were captured to monitor their development closely. After hatching, count the number of pores per unit area by choosing eggs without sperm, dead embryos, or abnormal shells. Furthermore, 150 Shitou goose eggs were hatched by automatic incubator, with adjustments made based on observed normal developmental stages that incubated by female geese. The eggs were carefully opened to meticulously document embryonic morphology and create a detailed development map. Measurements were taken of the eye diameter, length of the lower beak, tarsometatarsus bone, and embryo length. Subsequently, an analysis was conducted to assess the calcium, phosphorus, crude protein, and crude fat content to study the energy requirements for embryo development. As a result, the hatch rate of the incubator reached 86.67%, and the cumulative water loss rate increased with embryo age. Notably, normally developing embryos displayed a significantly higher number of pores on the eggshell surface compared to dead embryos (P < 0.05). Additionally, embryonic body length, eyeball diameter, and lower beak length exhibited continuous growth until day 19 of incubation, while tarsometatarsus length increased steadily from days 12 to 31. Liver size measurement began on the 10th day of incubation, while both leg and chest muscles showed continuous growth from the 12th day. For energy demand, the embryo primarily relied on protein sourced from the egg yolk within the first 10 days of development. Afterward, the egg yolk provided both protein and fat for embryonic growth. In summary, this study has generated a comprehensive developmental map for Shitou goose embryos, offering valuable insights into their growth and morphological changes throughout the incubation period. This map can serve as a reference for optimizing machine incubation techniques to enhance goose egg hatching rates and provide fresh perspectives on the development of geese.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have