The purpose of this framework is to identify the relative importance of selection and dispersion processes in structuring ecological communities. Using a "pattern-oriented modelling" approach, it consists of five steps: (a) aggregate information from the empirical community and its environment, (b) simulate communities under different degrees of dispersal and selection, (c) select the best set of simulations into a composite model using the environmental boundary (EB) and niche breadth (NB) of each observed species, (d) validate the composite model by comparing expected and observed results from three additional community patterns and (e) classify each observed species along the selection/non-selection continuum. A free-living marine nematodes data set from a coastal bay was used as empirical example. A total of 20 parameterizations were applied varying selection and dispersion levels. In the absence of selection, species from high-dispersal parameter sets showed maximum EBs and NBs, whilst selection parameter sets generated species with narrower EB and NB values. EB and NB values declined with decreasing dispersal. The composite model encompassed 96% of the 194 nematode species and predicted all the three patterns evaluated without further calibration, i.e., they are independent: (1) abundance-rank distribution, the assemblage structures along both the (2) spatial and (3) environmental gradients. Non-selection and selection parameter sets accounted for 34% and 85% of the observed species, respectively. The main advantage of this approach is that empirical niche measurements are placed in the context of model-generated expectations, enabling a deeper understanding of community assembly processes and how they vary from species to species.
Read full abstract