Federated learning (FL) has emerged as a transformative framework for collaborative learning, offering robust model training across institutions while ensuring data privacy. In the context of making a COVID-19 diagnosis using lung imaging, FL enables institutions to collaboratively train a global model without sharing sensitive patient data. A central manager aggregates local model updates to compute global updates, ensuring secure and effective integration. The global model’s generalization capability is evaluated using centralized testing data before dissemination to participating nodes, where local assessments facilitate personalized adaptations tailored to diverse datasets. Addressing data heterogeneity, a critical challenge in medical imaging, is essential for improving both global performance and local personalization in FL systems. This study emphasizes the importance of recognizing real-world data variability before proposing solutions to tackle non-independent and non-identically distributed (non-IID) data. We investigate the impact of data heterogeneity on FL performance in COVID-19 lung imaging across seven distinct heterogeneity settings. By comprehensively evaluating models using generalization and personalization metrics, we highlight challenges and opportunities for optimizing FL frameworks. The findings provide valuable insights that can guide future research toward achieving a balance between global generalization and local adaptation, ultimately enhancing diagnostic accuracy and patient outcomes in COVID-19 lung imaging.
Read full abstract