The landscape of psychiatric care is poised for transformation through the integration of pharmaco-multiomics, encompassing genomics, proteomics, metabolomics, transcriptomics, epigenomics, and microbiomics. This review discusses how these approaches can revolutionize personalized treatment strategies in psychiatry by providing a nuanced understanding of the molecular bases of psychiatric disorders and individual pharmacotherapy responses. With nearly one billion affected individuals globally, the shortcomings of traditional treatments, characterized by inconsistent efficacy and frequent adverse effects, are increasingly evident. Advanced computational technologies such as artificial intelligence (AI) and machine learning (ML) play crucial roles in processing and integrating complex omics data, enhancing predictive accuracy, and creating tailored therapeutic strategies. To effectively harness the potential of pharmaco-multiomics approaches in psychiatry, it is crucial to address challenges such as high costs, technological demands, and disparate healthcare systems. Additionally, navigating stringent ethical considerations, including data security, potential discrimination, and ensuring equitable access, is essential for the full realization of this approach. This process requires ongoing validation and comprehensive integration efforts. By analyzing recent advances and elucidating how different omic dimensions contribute to therapeutic customization, this review aims to highlight the promising role of pharmaco-multiomics in enhancing patient outcomes and shifting psychiatric treatments from a one-size-fits-all approach towards a more precise and patient-centered model of care.
Read full abstract