Solar radiation regulates most biological activities on Earth. Prolonged exposure to solar UV radiation can cause deleterious effects by inducing two major types of DNA damage, namely, cyclobutane pyrimidine dimers (CPDs) and pyrimidine 6-4 pyrimidone photoproducts. These lesions may be repaired by the photoreactivation (Phr) and nucleotide excision repair (NER) pathways; however, the principal UV-induced DNA repair pathway is not known in the fungal genus Pseudogymnoascus. In this study, we demonstrated that an unweighted UV-B dosage of 1.6kJ m-2 d-1 significantly reduced fungal growth rates (by between 22% and 35%) and inhibited conidia production in a 10 d exposure. The comparison of two DNA repair conditions, light or dark, which respectively induced photoreactivation (Phr) and NER, showed that the UV-B-induced CPDs were repaired significantly more rapidly in light than in dark conditions. The expression levels of two DNA repair genes, RAD2 and PHR1 (encoding a protein in NER and Phr respectively), demonstrated that NER rather than Phr was primarily activated for repairing UV-B-induced DNA damage in these Pseudogymnoascus strains. In contrast, Phr was inhibited after exposure to UV-B radiation, suggesting that PHR1 may have other functional roles. We present the first study to examine the capability of the Arctic and Antarctic Pseudogymnoascus sp. to perform photoreactivation and/or NER via RT-qPCR approaches, and also clarify the effects of light on UV-B-induced DNA damage repair in vivo by quantifying cyclobutene pyrimidine dimers and pyrimidine 6-4 pyrimidone photoproducts. Physiological response data, including relative growth rate, pigmentation and conidia production in these Pseudogymnoascus isolates exposed to UV-B radiation are also presented.