Bacillus subtilis is one of the commonly used hosts for heterologous enzyme expression, depending on media rich in carbon, nitrogen, and phosphate sources for optimal growth and enzyme production. Interestingly, our investigation of maltotetraose-forming amylase, a key enzyme for efficient maltotetraose synthesis, revealed that phosphate limitation significantly enhances the growth rate and production of heterologous enzymes in recombinant B. subtilis. Under phosphate-limited conditions in a 15 L fermenter, the enzyme activity reached 679.15 U/mL, an improvement of 101% over the initial levels and a 12 h reduction in fermentation time. Transcriptomic analysis indicated that phosphate limitation promotes sustained enzyme production by upregulating protein synthesis and quality control pathways while optimizing energy utilization. This strategy was validated across various enzyme systems, highlighting its general applicability for enhancing heterologous protein expressions. These findings provide valuable insights for the industrial production of maltotetraose-forming amylase and other high-value enzymes, supporting the advancement of microbial fermentation technology.
Read full abstract