Objective: To screen and identify plasma differentially expressed genes and related signal pathway by human gene expression profile array and fluorescent quantitative PCR. Methods: From September 2018 to October 2019, 291 workers from a Mercury-in-glass thermometer factory in Jiangsu Province were selected for an occupational health examination, a total of 60 persons were divided into two groups: high and low mercury exposure groups (30 persons in each group) . Plasma total RNA samples from the high exposure group and the low exposure group (10 cases each) were detected by gene expression microarray, and differentially expressed genes (DEGs) with fold change >2 were selected. DEGs were submitted to David and Metascape for gene function clustering, pathway and protein interaction network analysis. Finally, fluorescence quantitative PCR was performed to verify the changes in the expression levels of key DEGs in the high exposure group and the low exposure group (another 20 cases in each group) . Results: A total of 269 DEGs, of which 203 up regulated and 66 down regulated were identified in the differential expression analysis of gene expression microarray. Bioinformatics analysis suggested that, DEGs were involved in forebrain development, glial cell fate determinants of GO biological process and PID NF-KB, PTEN signal pathway. NFE2L1, SOX8, SOX6 and RNF2 (P<0.05) were confirmed down regulated in high level group by fluorescent quantitative PCR compared with the low level group (fold changes were 2.10, 11.52, 2.19, and 4.38 respectively) . Conclusion: The plasma NFE2L1, SOX8, SOX6 and RNF2 gene expressions are significantly altered in occupa tional high mercury exposure population. PTEN signaling pathway and fate of glia cells determines the biological process may be closely related to the body injury caused by mercury exposure.