Background: Oxidative stress in the testicles of male livestock can cause reduced fertility. Melatonin is a natural product with antioxidant effects, but its specific antioxidant mechanism is still unclear. This study used calf testicular Sertoli cells as materials to explore the mechanism by which melatonin alleviates the oxidative stress of Sertoli cells, laying a foundation for improving the fertility of bulls. Methods: The optimal treatment concentrations of H2O2 and melatonin (MLT) were screened out using a CCK8 kit and MDA kit. Then, the cells were divided into four groups for treatment: control group, H2O2 treatment group, MLT treatment group, and H2O2 and MLT co-treatment group, then the MDA, ROS, GSH, and SOD contents were detected. Real-time quantitative PCR analysis and Western blot analysis were used to detect genes and proteins related to the Nrf2-Keap1 pathway. Immunofluorescence staining was used to analyze changes in Nrf2. Results: Research results show that the MDA content of cells in the group treated with H2O2 and MLT combined was significantly lower than that in the group treated with H2O2 alone, but there was no difference from the control group. Compared with the control group, the ROS level of cells in the H2O2-treated group significantly increased, and the content of GSH and SOD significantly decreased. Compared with the H2O2-treated group, the ROS level of cells in the H2O2 and MLT co-treated group significantly decreased, and the content of GSH and SOD increased significantly, but no difference from the control group. Similarly, MTL can alleviate the changes in cellular Nrf2, Keap1, HO-1, and NQO1 expression caused by H2O2. Conclusions: Melatonin activates the Nrf2-Keap1 signaling pathway in Sertoli cells, elevating the expression of HO-1 and NQO1, and thereby exerting its antioxidant capabilities.
Read full abstract