Among the body systems, the immune system plays a fundamental role in the pathophysiology of sepsis. The effects of immunogenomic and immune cell infiltration in sepsis were still not been systematically understood. Based on modified Lasso penalized regression and RF, 8 DEIRGs (ADM, CX3CR1, DEFA4, HLA-DPA1, MAPK14, ORM1, RETN, and SLPI) were combined to construct an IRG classifier. In the discovery cohort, IRG classifier exhibited superior diagnostic efficacy and performed better in predicting mortality than clinical characteristics or MARS/SRS endotypes. Encouragingly, similar results were observed in the ArrayExpress databases. The use of hydrocortisone in IRG high-risk subgroup was associated with increased risk of mortality. In IRG low-risk phenotypes, NK cells, T helper cells, and infiltrating lymphocyte (IL) are significantly richer, while T cells regulatory (Tregs) and myeloid-derived suppressor cells (MDSC) are more abundant in IRG high-risk phenotypes. IRG score were significantly negatively correlated with Cytokine cytokine receptor interaction (CCR) and human leukocyte antigen (HLA). Between the IRG subgroups, the expression levels of several cytokines (IL-10, IFNG, TNF) were significantly different, and IRG score was significantly positively correlated with ratio of IL-10/TNF. Results of qRT-PCR validated that higher expression level of ADM, DEFA4, MAPK14, ORM1, RETN, and SLPI as well as lower expression level of CX3CR1 and HLA-DPA1 in sepsis samples compared to control sample. A diagnostic and prognostic model, namely IRG classifier, was established based on 8 IRGs that is closely correlated with responses to hydrocortisone and immunosuppression status and might facilitate personalized counseling for specific therapy.