Detection of new viruses or new virus hosts is essential for the protection of economically important agroecosystems and human health. Increasingly, metatranscriptomic data are being used to facilitate this process. Such data were obtained from adult Asian citrus psyllids (ACP) (Diaphorina citri Kuwayama) that fed solely on mandarin (Citrus ×aurantium L.) plants grafted with buds infected with 'Candidatus Liberibacter asiaticus' (CLas), a phloem-limited bacterium associated with the severe Asian variant of huanglongbing (HLB), the most destructive disease of citrus. Brassica yellows virus (BrYV), the causative agent of yellowing or leafroll symptoms in brassicaceous plants, and its associated RNA (named as BrYVaRNA) were detected in ACP. In addition, the porcine reproductive and respiratory syndrome virus (PRRSV), which affects pigs and is economically important to pig production, was also found in ACP. These viruses were not detected in insects feeding on plants grafted with CLas-free buds. Changes in the concentrations of insect-specific viruses within the psyllid were caused by coinfection with CLas. IMPORTANCE The cross transmission of pathogenic viruses between different farming systems or plant communities is a major threat to plants and animals and, potentially, human health. The use of metagenomics is an effective approach to discover viruses and vectors. Here, we collected buds from the CLas-infected and CLas-free mandarin (Citrus ×aurantium L. [Rutaceae: Aurantioideae: Aurantieae]) trees from a commercial orchard and grafted them onto CLas-free mandarin plants under laboratory conditions. Through metatranscriptome sequencing, we first identified the Asian citrus psyllids feeding on plants grafted with CLas-infected buds carried the plant pathogen, brassica yellows virus and its associated RNA, and the swine pathogen, porcine reproductive and respiratory syndrome virus. These discoveries indicate that both viruses can be transmitted by grafting and acquired by ACP from CLas+ mandarin seedlings.