Triple-negative breast cancer (TNBC) is recognized as the most aggressive molecular subtype of breast cancer. Recent studies have highlighted the complex role of autophagy in the pathogenesis of TNBC. In this study, we evaluated 18,330 genes, including 1111 autophagy-related genes, (ARGs), across 579 TNBC samples from online databases. Differentially expressed ARGs in TNBC were identified using high-throughput RNA-seq data from the Cancer Genome Atlas (TCGA). Prognostic factors were examined through Cox regression and multivariate Cox analyses, with predictive efficacy assessed using receiver operating characteristic (ROC) curves. A nomogram integrating the risk signature with clinicopathological factors, such as TNM stage, was developed. Immunohistochemical analysis of clinical samples was also conducted. EIF4EBP1 and NPAS3 were significantly correlated with prognostic outcomes in patients with TNBC. Multivariate Cox regression analysis demonstrated that the expression levels of these two genes were accurate predictors of disease progression in TNBC samples from TCGA and the GSE31519 dataset. The efficacy of this predictive model was validated using ROC curve analysis and calibration plots, confirming its ability to accurately estimate the 1-, 2-, and 3-year survival rates for individuals with TNBC. Additionally, EIF4EBP1 and NPAS3 expression influenced drug sensitivity in TNBC cell lines, with notably lower NPAS3 expression in TNBC tissues, particularly in Stage III cases. This study is the first to report NPAS3 expression in patients with TNBC. The autophagy-related genes EIF4EBP1 and NPAS3 may serve as independent prognostic factors for individuals with TNBC.
Read full abstract