Abstract

BackgroundAberrant activation of autophagy in triple-negative breast cancer (TNBC) has led researchers to investigate potential therapeutic strategies targeting this process. The regulation of autophagy is significantly influenced by METTL3. Our previous research has shown that the Panax ginseng-derived compound, 20(R)-panaxatriol (PT), has potential as an anti-tumor agent.However, it remains unclear whether PT can modulate autophagy through METTL3 to exert its anti-tumor effects. ObjectiveOur objective is to investigate whether PT can regulate autophagy in TNBC cells and elucidate the molecular mechanisms. Study DesignFor in vitro experiments, we employed SUM-159-PT and MDA-MB-231 cells. While in vivo experiments involved BALB/c nude mice and NOD/SCID mice. MethodsIn vitro, TNBC cells were treated with PT, and cell lines with varying expression levels of METTL3 were established. We assessed the impact on tumor cell activity and autophagy by analyzing autophagic flux, Western Blot (WB), and methylation levels. In vivo, subcutaneous transplantation models were established in BALB/c nude and NOD/SCID mice to observe the effect of PT on TNBC growth. HE staining and immunofluorescence were employed to analyze histopathological changes in tumor tissues. MeRIP-seq and dual-luciferase reporter gene assays were used to identify key downstream targets. Additionally, the silencing of STIP1 Homology And U-Box Containing Protein 1 (STUB1) explored PT's effects. The mechanism of PT's action on STUB1 via METTL3 was elucidated through mRNA stability assays, mRNA alternative splicing analysis, and nuclear-cytoplasmic mRNA separation. ResultsIn both in vivo and in vitro experiments, it was discovered that PT significantly upregulates the expression of METTL3, leading to autophagy inhibition and therapeutic effects in TNBC. Simultaneously, through MeRIP-seq analysis and dual-luciferase reporter gene assays, we have demonstrated that PT modulates STUB1 via METTL3, influencing autophagy in TNBC cells. Furthermore, intriguingly, PT extends the half-life of STUB1 mRNA by enhancing its methylation modification, thereby enhancing its stability. ConclusionIn summary, our research reveals that PT increases STUB1 m6A modification through a METTL3-mediated mechanism in TNBC cells, inhibiting autophagy and further accentuating its anti-tumor properties. Our study provides novel mechanistic insights into TNBC pathogenesis and potential drug targets for TNBC.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.