Disgust can be thought of as an affective system that has evolved to detect signs of pathogens, parasite and toxins as well as to stimulate behaviors that reduce the risk of their acquisition. Disgust incorporates social cognitive mechanisms to regulate exposure to and, or anticipate and avoid exposure to pathogens and toxins. Social cognition entails the acquisition of social information about others (ie, social recognition) and from others (ie, social learning). This involves recognizing and assessing other individuals and the pathogen/parasite/contamination/toxin threat they pose and deciding about when and how to interact with and, or avoid them. Social cognition provides a frame-work for examining the expression of disgust and the associated neurobiological mechanisms. Here, we briefly consider the relations between social cognition and pathogen/parasite/toxin avoidance behaviors. We briefly discuss aspects of: (1) the odor mediated social recognition of actual and potentially infected individuals and the impact of parasite/pathogen threat on disgust mate and social partner choice; (2) the roles of "out-groups" (strangers, unfamiliar individuals) and "in-groups" (familiar individuals) in the expression of disgust and pathogen avoidance behaviors; (3) individual and social learning of disgust and empathy for disgust; (4) toxin elicited disgust and anticipatory disgust; (5) the neurobiological mechanisms, and in particular the roles of the nonapeptide, oxytocin and estrogenic mechanism associated with social cognition and the expression of disgust. These findings on the social neuroscience of disgust have a direct bearing on our understanding of the roles of disgust in shaping human and nonhuman social behavior.