Network-on-chip (NoC) is widely used as an efficient communication architecture in multi-core and many-core System-on-chips (SoCs). However, the shared communication resources in an NoC platform, e.g., channels, buffers, and routers, might be used to conduct attacks compromising the security of NoC-based SoCs. Most of the proposed encryption-based protection methods in the literature require leaving some parts of the packet unencrypted to allow the routers to process/forward packets accordingly. This reveals the source/destination information of the packet to malicious routers, which can be exploited in various attacks. For the first time, we propose the idea of secure, anonymous routing with minimal hardware overhead to encrypt the entire packet while exchanging secure information over the network. We have designed and implemented a new NoC architecture that works with encrypted addresses. The proposed method can manage malicious and benign failures at NoC channels and buffers by bypassing failed components with a situation-driven stochastic path diversification approach. Hardware evaluations show that the proposed security solution combats the security threats at the affordable cost of 1.5% area and 20% power overheads chip-wide.
Read full abstract