To evaluate the effectiveness of three-dimensional (3D) printing assisted internal fixation for unstable pelvic fractures. The clinical data of 28 patients with unstable pelvic fractures admitted between March 2015 and December 2017 were retrospectively analyzed. The patients were divided into two groups according to different surgical methods. Eighteen cases in the control group were treated with traditional anterior and posterior open reduction and internal fixation with plate; 10 cases in the observation group were treated with 3D printing technology to make pelvic models and assist in shaping the subcutaneous steel plates of the anterior ring. Sacroiliac screw navigation template was designed and printed to assist posterior ring sacroiliac screw fixation. There was no significant difference between the two groups in gender composition, age, cause of injury, fracture type, and time interval from injury to surgery ( P>0.05). The operation time, intraoperative blood loss, intraoperative fluoroscopy times, incision length, waiting time for weight-bearing exercise, and fracture healing time were recorded and compared between the two groups. Majeed score was used to evaluate the function at last follow-up. At immediate after operation, the reduction was evaluated according to Matta imaging scoring criteria, and the success of sacroiliac joint screw implantation in the observation group was evaluated. The deviation of screw entry point and direction between postoperative screws and preoperative simulated screws were compared in the observation group. All the operation was successfully completed, and all patients were followed up 6-18 months (mean, 14.4 months). In the control group, 1 case had wound infection and 2 cases had deep vein thrombosis. No serious complication such as important blood vessels, and nerve injury and pulmonary embolism occurred in other patients in the two groups. No screw pulling out or steel plate breaking occurred. The operation time, intraoperative blood loss, fluoroscopy times, incision length, and waiting time for weight-bearing exercise of the control group were significantly more than those of the observation group ( P<0.05); there was no significant difference in fracture healing time between the two groups ( t=0.12, P=0.90). There was no significant difference in reduction quality between the two groups at immediate after operation ( Z=-1.05, P=0.30); Majeed score of the observation group was significantly better than that of the control group at last follow-up ( Z=-2.42, P=0.02). The success rate of sacroiliac joint screw implantation in the observation group reached category Ⅰ. In the observation group, the deviation angle of the direction of the screw path between the postoperative screw and the preoperative simulated screw implant was (0.09±0.22)°, and the deviation values of the entry points on the X, Y, and Z axes were (0.13±0.63), (0.14±0.58), (0.15±0.53) mm, respectively. There was no significant difference when compared with those before the operation (all values were 0) ( P>0.05). Computer design combined with 3D printing technology to make personalized pelvic model and navigation template applied to unstable pelvic fractures, is helpful to accurately place sacroiliac screw, reduce the operation time, intraoperative blood loss, and the fluoroscopy times, has good waiting time for weight-bearing exercise and function, and it is an optional surgical treatment for unstable fractures.