Preeclampsia is a clinical syndrome defined as the new onset of hypertension and proteinuria during the second half of pregnancy.1 It afflicts 3% to 5% of pregnancies and is a leading cause of maternal mortality, especially in developing countries.2,3 Because the only known remedy is delivery of the placenta, in developed countries preeclampsia is an important cause of premature delivery, usually medically indicated for the benefit of the mother. This results in infant morbidity and substantial healthcare expenditure.4 Despite the considerable morbidity and mortality, the cause of preeclampsia has remained enigmatic. Both hypertension and proteinuria implicate the endothelium as the target of the disease. The hypertension of preeclampsia is characterized by peripheral vasoconstriction and decreased arterial compliance.5,6 The proteinuria of preeclampsia is associated with a pathognomonic renal lesion known as glomerular endotheliosis, in which the endothelial cells of the glomerulus swell and endothelial fenestrations are lost.7,8 Podocyturia has been recently associated with preeclampsia during clinical disease9; however, whether this is the cause or effect of proteinuria is unknown. The glomerular filtration rate is decreased compared with normotensive pregnant women; in rare cases, acute renal failure may develop. Preeclampsia is a systemic vascular disorder that may also affect the liver and the brain in the mothers. When the liver is involved, women may present with abdominal pain, nausea, vomiting, and elevated liver enzymes. Pathological examination of the liver reveals periportal and sinusoidal fibrin deposition and, in more extreme cases, hemorrhage and necrosis.10 The severe preeclampsia variant HELLP syndrome (hemolysis, elevated liver enzymes, low platelets) occurs in ≈20% of women with severe preeclampsia,11 and is named not only for the liver involvement, but also for the disorder of the coagulation system that develops.12 Approximately 20% of …
Read full abstract