Adjusting end-of-milking criteria, in particular applying a maximum milking time determined by expected milk yield at an individual milking session, is one strategy to optimize parlor efficiency. However, this strategy can be difficult to apply practically on farm due to large differences in session milk yield, driven by milking interval, which affects milking routines and can be limited by in-parlor technology. The objective of this study was to test the hypothesis that a single fixed milking time (duration) could be applied at all milking sessions without compromising milk production or udder health for a range of milking intervals. To test the hypothesis, 4 experimental herds were established: (1) herd milked twice a day (TAD) using a 10- and 14-h interval, (2) herd milked TAD using an 8- and 16-h interval, (3) herd milked 3 times in 2 d using a 10-19-19-h interval, and (4) herd milked once a day (OAD). Herds consisted of 40 cows each, and were established for two 6-wk experimental periods, one in peak lactation and the other in mid-late lactation. Within each herd, half the cows had an end-of-milking criterion of 0.35 kg/min (Flow), and the other half had milking ended after a fixed period of time (FixedT) based on the average milking session yield, the daily milk yield divided by average number of milkings per day, irrespective of milking interval. We found no differences in daily milk yield between end-of-milking criteria due to residual milk from one milking likely increasing the proportion of milk in the udder cistern at the next milking session for the FixedT treatment. However, fat yield was compromised when the percentage of the herd with a truncated milking exceeded an estimated 33% at a milking session, which occurred in the TAD 8-16 herd due to the divergence from the average milking interval (in the case of TAD, 12-12 h). Applying a fixed milking time had no detrimental effects on udder health, except in the OAD herd in mid-late lactation, which had both a higher cell count and new intramammary infection rate. This warrants further investigation, although the majority of cultured bacteria were coagulase-negative staphylococci (CNS). Consequently, we conclude that, in general, with appropriate monitoring (e.g., weekly inspection) to ensure the proportion of the herd with truncated milkings does not exceed 33%, farmers in pasture-based dairy systems can use a fixed milking time to improve parlor efficiency.
Read full abstract