Precalving feeding level and body condition score (BCS) alter postcalving energy balance and oxidant status of dairy cows. We hypothesized that the reported benefits of a controlled restriction precalving depend on precalving BCS. The objective was to identify alterations in activity and intermediates of the hepatic one-carbon metabolism, transsulfuration, and tricarboxylic acid pathways. Twenty-eight pregnant and nonlactating grazing dairy cows of mixed age and breed (Friesian, Friesian × Jersey) were randomly allocated to 1 of 4 treatment groups in a 2 × 2 factorial design: 2 prepartum BCS categories [4.0 (thin, BCS4) and 5.0 (optimal, BCS5); 10-point scale], by managing cows in late lactation to achieve the 2 groups at dry-off, and 2 levels of energy intake during the 3 wk preceding calving (75 or 125% of estimated requirements), obtained via allowance (m2/cow) of fresh pasture composed of mostly perennial ryegrass and white cover. Average (± standard deviation) age was 6 ± 2, 6 ± 3, 5 ± 1, and 7 ± 3 yr for BCS4 fed 75 and 125%, and BCS5 fed 75 and 125%, respectively. Breed distribution (average ± standard deviation) for the 4 groups was 79 ± 21, 92 ± 11, 87 ± 31, and 74 ± 23% Friesian, and 17 ± 20, 8 ± 11, 13 ± 31, and 25 ± 23% Jersey. Liver tissue was collected by biopsy at -7, 7, and 28 d relative to calving. Tissue was used for 14C radio-labeling assays to measure betaine-homocysteine S-methyltransferase, 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR), and cystathionine-β-synthase (CBS) activity. Liver metabolomics was undertaken using a targeted liquid chromatography with tandem mass spectrometry-based profiling approach. After initial liquid chromatography separation, mass spectra were acquired under both positive and negative ionization, whereas multiple reaction monitoring was used to measure target compound signal response (peak area count). Enzyme activity and metabolite peak area count were normalized with the homogenate protein concentration. Repeated measures analysis of variance via PROC MIXED in SAS (SAS Institute Inc., Cary, NC), with BCS, feeding, and time as fixed effects, and cow as random effect was used. All enzyme activities were affected by time, with betaine-homocysteine S-methyltransferase activity peaking at 7 d, whereas CBS and MTR activity decreased postpartum. Overall, thin cows had greater MTR activity, whereas cows fed 125% requirements had greater CBS activity. An interaction was detected between BCS and feeding for CBS activity, as thin cows fed 125% of requirements had greater overall activity. Compared with liver from BCS4 cows, BCS5 cows had overall greater betaine, glycine, butyrobetaine/acetylcholine, serine, and taurine concentrations. The same metabolites, plus choline and N-N-dimethylglycine, were overall greater in liver of cows fed 75% compared with those fed 125% of requirements. An interaction of BCS and feeding level was detected for the aforementioned metabolites plus methionine, cystathionine, cysteinesulfinate, and hypotaurine, due to greater overall concentrations in BCS5 cows fed 75% of requirements compared with other groups. Overall, differences in hepatic enzyme activity and intermediate metabolites suggest that both BCS and feeding level can alter the internal antioxidant system (e.g., glutathione and taurine) throughout the periparturient period. Further studies are needed to better understand potential mechanisms involved.
Read full abstract