Cattle grazing of pastures deposits urine onto the pasture soil at high nitrogen (N) rates that exceed the pasture's immediate N demands, increasing the risk of N loss. Nitrous oxide (N2O), a greenhouse gas, and dinitrogen (N2) are lost from the cattle urine patches. There is limited information on the in situ loss of N2 from grazed-pasture systems which is needed for understanding pasture soil N dynamics and balances. The 15N flux method was used to determine N2 and N2O fluxes over time following synthetic urine-15N application at either 400 or 800 kg N ha−1 to a grazed perennial pasture soil. Results showed that daily N2O fluxes were higher under 800 kg N ha−1 than under 400 kg N ha−1, but there was no significant difference in N2 fluxes. Cumulative N2O emissions from soil with 400 kg N ha−1 and 800 kg N ha−1 applied represented 0.16 ± 0.08% and 0.43 ± 0.08% of deposited N, respectively, while emitted N2 accounted for 32.1 ± 4.1% and 14.4 ± 1.7%, respectively, over 95 days after urine application. Codenitrification and denitrification co-occurred, with denitrification accounting for 97.9 to 98.5% of total N2 production. Recovery of urine-15N in pasture decreased with increasing N rate with 14.7 ± 0.5% and 9.9 ± 0.8% recovered at 400 and 800 kg N ha−1, respectively after 95 days. The N2O/(N2 + N2O) product ratio was generally higher during periods of nitrification of urine-N (the first month after urine application) but with no clear relationship to other measured variables. Contrary to our hypothesis, an elevated urine-N rate did not enhance N2 loss. This is speculated to be due to enhanced ammonia volatilisation and transfer of N as nitrate, to deeper soil layers. Soil relative gas diffusivity indicated that high N2 fluxes resulted from entrapped N2 diffusing from the draining soil.
Read full abstract