Against the backdrop of rapid urbanization, there is a passive adaptation state shown in urban and rural ecological spaces. Due to the shrinking of ecological patches and the fracture of corridors, problems such as the obstruction of ecological processes, the decline of ecosystem services, and the loss of biodiversity occur. Considering that county ecological space is the key level to undertake provincial ecological security patterns and implement ecological demonstration projects, the construction of a county ecological infrastructure (EI) network is beneficial to the protection of regional ecological security, the improvement of the structures and functions of farmland ecosystems, and the enhancement of the quality of human settlements. In this study, taking Langzhong County in Sichuan Province as an example, a method path for an EI network construction was explored, and an optimization strategy for ecological patterns was proposed. Firstly, morphological spatial pattern analysis (MSPA) and a patch importance index were employed to identify ecological sources. Secondly, by constructing a landscape resistance surface and adopting a minimum cumulative resistance (MCR) model, potential EI corridor paths were extracted. Thirdly, the interaction force values between ecological sources were calculated with a gravity model and important ecological corridors were identified for priority protection and restoration. Finally, an EI corridor network was optimized by combining network structure indexes (α, β, and γ) with the field situation, and stepping stone patches and ecological breakpoints were identified. Based on the analysis results, an ecological protection pattern, which involved three vertical and two horizontal ecological belts, four ecological control zones, and six clusters of EI networks in Langzhong County, was put forward, aiming at protecting 50 ecological sources, repairing 105 ecological corridors of different grades, adding 9 stepping stone patches near long-distance corridors and 15 at the intersection of ecological corridors, and repairing 18 ecological breakpoints. This study has guiding significance for the optimization of county ecological patterns, the construction of farmland forest belts, and site selection of ecological restoration projects.
Read full abstract