Postural changes are accompanied by the formation of an adaptive response of the cardiovascular system. This is manifested by a change in heart rate variability. The features of the reaction largely depend on the excitability (reactivity) of the vegetative centers. The aim of the study was to identify individual features of heart rate regulation in postural changes depending on the reactivity of sympathetic and parasympathetic autonomic centers in students. Material and Methods. In 50 men, temporal, frequency, geometric and calculated indicators of heart rate variability were determined in a horizontal position, with active orthostasis, passive orthostasis and passive antiorthostasis. The reactivity of the sympathetic system was assessed by the change of heart rate in active orthostasis. The reactivity of the parasympathetic system was determined by K30:15. Results and Discussion. With normal and high sympathetic reactivity, active orthostasis causes an increase in the low-frequency power of the spectrum, stress index, heart rate, a decrease in the high-frequency component and the duration of cardiac intervals. The changes are more pronounced with high sympathetic reactivity. In passive orthostasis, high sympathetic reactivity is manifested by a large increase in heart rate, shortening of cardiac intervals and a decrease in the proportion of the spectrogram high-frequency component. Passive antiorthostasis with normal sympathetic reactivity causes a decrease in the adequacy of the regulation processes and an expansion of the scatterogram. In subjects with high parasympathetic reactivity with active orthostasis, the increase in the stress index is less than with normal and low reactivity. With low parasympathetic reactivity, the indicator of the adequacy of the regulation processes is greater than with normal and high reactivity, and the increase in heart rate and shortening of the minimum cardiac interval is greater than with normal. In passive orthostasis, the proportion of the high-frequency component decreases, the proportion of the ultra-low-frequency component increases, the modal cardiointerval shortens, which is more pronounced with low parasympathetic reactivity than with normal. In passive antiorthostasis, the ultra-low frequency component decreases in individuals with normal reactivity. With high reactivity, the maximum value of the high-frequency component increases and the adequacy of the regulation processes decreases. Conclusion. Active and passive orthostasis is accompanied by activation of sympathetic centers. It is more pronounced with high reactivity of the sympathetic department and low reactivity of the parasympathetic. Passive antiorthostasis stimulates the activity of parasympathetic cardiac centers in subjects with normal, high parasympathetic reactivity and normal sympathetic reactivity.