In this article, a novel topology of wideband on-chip Wilkinson power divider (WPD) with good insertion loss (IL) performance is proposed and demonstrated on gallium arsenide (GaAs)-based integrated passive device (IPD) technology. The proposed WPD is further analyzed by the even and odd method. To verify the advantage of the proposed WPD against the conventional one, two examples are numerically investigated, showing that the proposed one achieves better performance in terms of IL and isolation. In addition, the proposed design achieves a miniature area and small amplitude and phase imbalance (AI) performance. The fractional bandwidth (FBW) of the proposed WPD is 100% (6-18 GHz), where the magnitude imbalance is less than 0.08 dB and phase imbalance is better than 0.4°. Furthermore, the minimum IL is better than 0.96 dB and return loss is better than 13.7 dB within the core passband. Meanwhile, the isolation of the WPD is better than 17.6 dB. Finally, to further demonstrate our design conception, the proposed WPD has been fabricated on GaAs IPD technology with size of 1.5 × 0.9 mm2, and measured by on-wafer probing. All the simulated and measured results of the proposed WPD are matched reasonably well with each other, thus firmly validating the claimed superior performance of the proposed WPD in the wide operating bandwidth, low IL, and high isolation.
Read full abstract