Effective and stable electrocatalysts (ECs) are of great importance for the modification of semiconductor (SC) photoanodes, to achieve efficient photoelectrochemical (PEC) water splitting. Herein we demonstrate that the low-crystallinity mesoporous spinel CoGa2O4 oxygen evolution catalyst (OEC), exhibiting excellent bulk electrocatalytic stability and activity for oxygen-evolving reaction (OER), obviously improved water oxidization on a-Fe2O3 photoanode. Low crystallinity not only balances the stability and activity for ECs themselves but facilitates formation of adjustable Schottky junctions between ECs and SCs. Those would contribute to surface state passivation and photogenerated hole extraction, leading to lower onset potential and larger photocurrent. Thus, our finding suggests that low crystallinity could serve as a beneficial feature of ECs to achieve efficient PEC water splitting, owing to its preponderant tendency for the improvement of interface reaction kinetics.